Time-Domain Spectral SynthesisΒΆ
Similar to the partial tracking exercise, this implementation is designed to help understand time-domain spectral synthesis. There are more efficient ways to perform this kind of additive synthesis - especially in offline applications. In this version, we will go sample by sample in the output signal, allowing us to inspect (and debug) every aspect.
This Python implementation is based on three classes and a nested loop. The classes will be provided completely, alongside the basic structure of the loop. Some gaps are left to fill. These gaps are marked with the '[CODE]' label.
ModulesΒΆ
In addition to the standard modules, we add sounddevice to play audio directly from python. Based on PortAudio, this module works on all common operating systems.
import numpy as np
import scipy as sp
from matplotlib import pyplot as plt
import sounddevice as sd
The sounddevice moule can be installed with:
$ pip install sounddevice
Make sure to have your virtual environment activated before installing.
The ClassesΒΆ
Partial ClassΒΆ
The partial class can be considered a state machine in the wider sense, with the attributes amplitude, frequency and phase. It implements a step method, that increments the phase based on the frequency. The instantaneous amplitude (the amplitude of a signal at a specific point in time) of this oscillator can be accessed with a dedicated method.
#################################################################################
# Class for a single partial
#################################################################################
class partial:
def __init__(self, fs):
self.fs = fs
self.a=0
self.f=0
self.p=0
# method for setting the partial parameters:
def set_values(self, f, a):
self.f = f
self.a = a
# method to step one sample ahead with the recent frequency of the sine
def step(self):
self.p += 2*np.pi*self.f * (1/self.fs)
self.p = self.p % (2*np.pi)
# method for returning the instantaneous amplitude
# - based on the partial's parameters
def get_value(self):
return self.a * np.sin(self.p)
Partial Bank ClassΒΆ
The parial bank holds a list of partials. It is basically a convinience-wrapper to manage all partials together.
#################################################################################
# Class for the partial bank
#################################################################################
class bank:
def __init__(self, fs, nPart):
self.nPart = nPart
# the partial bank holds a list of partials
self.partials = [partial(fs) for i in range(nPart)]
# method to loop over all partials and sum their instantaneous amplitude:
def get_sample(self):
out = 0
for p in self.partials:
out += p.get_value()
return out
# method to step one sample ahead for every partial:
def step(self):
for p in self.partials:
p.step()
# method to set all partial values with two vectors:
def set_partials(self,F,A):
for i in range(self.nPart):
self.partials[i].set_values(F[i], A[i])
Interpolator ClassΒΆ
We need to interpolate our partial parameter trajectories between the support points we get from the partial tracking matrices.
This class is a very simple linear interpolator.
It creates a linear slope between two frames with nHop
samples and offers a method to get the values within the slope.
#################################################################################
# Interpolator class
#################################################################################
class interpolator:
def __init__(self, nHop):
self.nHop = nHop
self.traj = np.zeros(nHop)
# method to set new start (a) and end (b) values for the linear slope:
def set_new(self, a,b):
self.traj = np.linspace(a, b, self.nHop)
# method to get the value of the linear slope at any position:
def get_at(self, pos):
val = self.traj[pos]
return val
PreparationsΒΆ
Before we start with the main synthesis loop, we prepare all our input and output data.
Loading Analysis ResultsΒΆ
If a set of analysis results has been stored following the partial tracking exercise, it can be loaded with the following lines:
#################################################################################
# Prepare Data
#################################################################################
# load matrices with partial trajectories
F = np.loadtxt('partial_frequencies.sms')
A = np.loadtxt('partial_amplitudes.sms')
# load analysis parameters
fs = int(np.loadtxt('params.sms')[0])
nHop = int(np.loadtxt('params.sms')[1])
In case the analysis was not successful, a set of analysis results can be downloaded here: https://ringbuffer.org/download/spectral_modeling/
Synthesis Parameters and ObjectsΒΆ
We can obtain the number of frames and the number of partials from the dimension of the data we have loaded:
#################################################################################
# Get synthesis parameters from matrices
#################################################################################
# use the shape method to get number of frames and partials:
nFrames = A.shape[0]
nPart = A.shape[1]
# allocate output vector:
y = np.zeros(nHop*nFrames)
# list of interpolators for the partial amplitudes:
interpA = [interpolator(nHop) for i in range(nPart)]
# list of interpolators for the partial freuencies:
interpF = [interpolator(nHop) for i in range(nPart)]
# the oscillator-bank object:
ob = bank(fs,nPart)
The Synthesis LoopΒΆ
Similar to the analysis, our synthesis is a loop along the time axis, with a nested loop over the partials. More precisely, this loop steps over every output sample. Whenever a new analysis frame is reached, the interpolators are set.
The following Unified Modeling Language (UML) sequence diagram visualizes the core loops and calls of this implementation:
#################################################################################
# Loop over each output sample
#################################################################################
# A counter over the analysis frames:
# - starting at '1" for interpolation
frameIdx = 1
# A counter in the synthesis domain
frameCounter = nHop
# LOOP over all output samples:
for sample_idx in range(len(y)):
# IF we reach a new analysis frame
if frameCounter >= nHop:
# get last frame's partial values:
lastA = '[CODE]'
lastF = '[CODE]'
# get this frame's partial values:
thisA = '[CODE]'
thisF = '[CODE]'
# LOOP over all synthesis frames:
for partCount in range(nPart):
# set interpolator for for all partial trajectories:
interpA[partCount].set_new('[CODE]')
interpF[partCount].set_new('[CODE]')
# rest the frame counter:
frameCounter = 0
# increase the frame index
frameIdx += 1
# stop this loop if no analysis frames are left:
if frameIdx>=nFrames:
break
# get the partial trajectory values from the interpolators:
aList = '[CODE]'
fList = '[CODE]'
# set the oscillators (partials):
ob.set_partials('[CODE]')
# get this output value from all partials (via the oscillator bank):
y[sample_idx] = '[CODE]'
# step one sample ahead with all partials (via the oscillator bank):
'[CODE]'
# increase the frame counter:
frameCounter += 1
sd.play(y,fs)
Manipulation ExercisesΒΆ
Sinusoidal modeling has a couple of strenghts:
- It reduces the data of a stored sound significantly.
- It allows limitless means of manipulation.
The following exercises show how we can manipulate a sound using the analysis-synthesis approach: