The PPG Wave Synthesizer Block Diagram¶
In [3]:
import numpy as np
import matplotlib.pyplot as plt
from waveTableOscillator import voiceGenerator, phaseGenerator, waveTable, linearInterpolator
from scipy.io import wavfile
Implementing an ADSR and simple key control
In [5]:
def ADSR(attackTime, decayTime, sustainTime, releaseTime, samplerate):
# An attack is a linear ramp up
attack = np.linspace(0, 1, int(samplerate*attackTime))
# An Decay is a linear ramp down
decay = np.linspace(1, 0.5, int(samplerate*decayTime))
# Sustain is a unit-step function
sustain = np.linspace(0.5, 0.5, int(samplerate*sustainTime))
# Release is another linear ramp down
release = np.linspace(0.5, 0, int(samplerate*releaseTime))
adsr = np.concatenate((attack, decay, sustain, release), axis=None)
return adsr
def key_control(wave_type, table_size, frequency, attackTime, decayTime, sustainTime, releaseTime, samplerate=48000, duty_cycle=0.5):
wave = voiceGenerator(table_size)
adsr_env = ADSR(attackTime, decayTime, sustainTime, releaseTime, samplerate)
duration = len(adsr_env)/samplerate
audio = wave.waveform(wave_type, frequency, duration, duty_cycle)
note = adsr_env * audio
return note
Simple Synthesis¶
In [7]:
# Generate some notes
if __name__ == "__main__":
# Define sample rate and table size
sample_rate = 48000
table_size = 2048
# Define frequencies for a C major scale (C4 to C5)
c_major_scale = {
'C4': 261.63,
'D4': 293.66,
'E4': 329.63,
'F4': 349.23,
'G4': 392.00,
'A4': 440.00,
'B4': 493.88,
'C5': 523.25
}
# ADSR parameters for different note types
short_note = (0.01, 0.1, 0.1, 0.2) # Short staccato note
medium_note = (0.05, 0.2, 0.4, 0.3) # Medium length note
long_note = (0.1, 0.3, 1.0, 0.5) # Long sustained note
# Create an empty array for our song
song = np.array([])
# Add notes to the song
sequence = [
# Note name, waveform, ADSR type
('C4', 'sine', medium_note),
('E4', 'triangle', medium_note),
('G4', 'square', medium_note),
('C5', 'saw', long_note),
('G4', 'square', short_note),
('E4', 'triangle', short_note),
('C4', 'sine', long_note)
]
for note_name, wave_type, adsr_type in sequence:
frequency = c_major_scale[note_name]
attackTime, decayTime, sustainTime, releaseTime = adsr_type
# Generate the note
note_data = key_control(
wave_type,
table_size,
frequency,
attackTime,
decayTime,
sustainTime,
releaseTime,
sample_rate
)
song = np.append(song, note_data)
# Normalize to prevent clipping
song = song / np.max(np.abs(song))
# Convert to 16-bit audio
song_int16 = (song * 32767).astype(np.int16)
# Save to WAV file
wavfile.write("wavetable_melody.wav", sample_rate, song_int16)
# Create three notes with different waveforms
c_note = key_control('sine', table_size, c_major_scale['C4'], 0.1, 0.1, 0.8, 0.5, sample_rate)
e_note = key_control('triangle', table_size, c_major_scale['E4'], 0.1, 0.1, 0.8, 0.5, sample_rate)
g_note = key_control('saw', table_size, c_major_scale['G4'], 0.1, 0.1, 0.8, 0.5, sample_rate)
# Mix them together (ensure same length)
min_length = min(len(c_note), len(e_note), len(g_note))
chord = (c_note[:min_length] + e_note[:min_length] + g_note[:min_length]) / 3.0
# Convert to 16-bit audio
chord_int16 = (chord * 32767).astype(np.int16)
# Save to WAV file
wavfile.write("wavetable_chord.wav", sample_rate, chord_int16)
Modulation¶
In [ ]:
def generate_lfo(lfo_type, lfo_freq, duration, sample_rate=48000):
# Create a voice generator for the LFO
vg = voiceGenerator(table_size=1024)
# Generate the LFO signal
lfo_signal = vg.waveform(lfo_type, lfo_freq, duration)
lfo_signal = (lfo_signal + 1) / 2
return lfo_signal
SNR Calculation¶
The SNR for a table lookup sine oscillator can be approximated as, where $N$ is the size of the table:
$$ \text{SNR} \approx 6.02 \cdot \log_2(N) + \text{constant} $$
This can be calculated with the function below
In [21]:
def calculate_wavetable_snr(frequency, duration, table_size=1024, sample_rate=48000):
# Generate wavetable signal
wave_type = 'sine'
vg = voiceGenerator(table_size)
wavetable_signal = vg.waveform(wave_type, frequency, duration)
# Generate ideal reference signal
num_samples = len(wavetable_signal)
time = np.arange(num_samples) / sample_rate
reference_signal = np.sin(2 * np.pi * frequency * time)
# Calculate noise as difference between wavetable and reference
noise = wavetable_signal - reference_signal
# Calculate SNR
signal_power = np.mean(reference_signal**2)
noise_power = np.mean(noise**2)
if noise_power == 0: # Avoid division by zero
return float('inf')
snr = 10 * np.log10(signal_power / noise_power)
return snr
The history saving thread hit an unexpected error (OperationalError('attempt to write a readonly database')).History will not be written to the database.
In [20]:
# Experiment with table_size and SNR
snr = calculate_wavetable_snr(440, 2, table_size=24, sample_rate=48000)