Spatial Additive Synthesis

Additive Synthesis and Spectral Modeling are in detail introduced in the corresponding sections of the Sound Synthesis Introduction. Since sounds are created by combining large numbers of spectral components, such as harmonics or noise bands, spatialization at synthesis stage is an obvious method. Listeners can thereby be spatially enveloped by a single sound, with spectral components being perceived from all angles. The continuous character, however, blurs the localization.


SOS

Spatio-operational spectral (SOS) synthesis (Topper, 2002) is an attempt towards a dynamic spatial additive synthesis, implemented in MAX/MSP and RTcmix. Partials are rotated independently within a 2D 8 channel speaker setup. A first experiment used a varying rate circular spatial path of the first eight partials of a square wave, as shown in Figure 1.

/images/spatial/spatial_synthesis/sos_1.png

Figure 1: First SOS experiment (Topper, 2002).

Figure 2 shows the second experiment with one partial moving against the others.

/images/spatial/spatial_synthesis/sos_2.png

Figure 2: Second SOS experiment (Topper, 2002).


GLOOO

GLOOO is a system for real-time expressive spatial synthesis with spectral models. A haptic interface allows the dynamic distribution of 100 spectral components, allowing a control over the spread and position of the resulting violin sound. The project is best documented on the corresponding websites:


References

2017

  • Grimaldi, Vincent and Böhm, Christoph and Weinzierl, Stefan and von Coler, Henrik. Parametric Synthesis of Crowd Noises in Virtual Acoustic Environments. In Proceedings of the 142nd Audio Engineering Society Convention. Audio Engineering Society, 2017.
    [details] [BibTeX▼]

2015

  • Stuart James. Spectromorphology and spatiomorphology of sound shapes: audio-rate AEP and DBAP panning of spectra. In Proceedings of the International Computer Music Conference (ICMC). 2015.
    [details] [BibTeX▼]
  • Ryan McGee. Spatial modulation synthesis. In Proceedings of the International Computer Music Conference (ICMC). 2015.
    [details] [BibTeX▼]

2009

  • Alexander Müller and Rudolf Rabenstein. Physical modeling for spatial sound synthesis. In Proceedings of the International Conference of Digital Audio Effects (DAFx). 2009.
    [details] [BibTeX▼]

2008

  • Scott Wilson. Spatial swarm granulation. In Proceedings of the International Computer Music Conference (ICMC). 2008.
    [details] [BibTeX▼]
  • David Kim-Boyle. Spectral spatialization - an overview. In Proceedings of the International Computer Music Conference (ICMC). Belfast, UK, 2008.
    [details] [BibTeX▼]

2004

  • Curtis Roads. Microsound. The MIT Press, 2004. ISBN 0262681544.
    [details] [BibTeX▼]

2002

  • David Topper, Matthew Burtner, and Stefania Serafin. Spatio-operational spectral (SOS) synthesis. In Proceedings of the International Conference of Digital Audio Effects (DAFx). Singapore, 2002.
    [details] [BibTeX▼]